ANTIFERROMAGNETIC COMPLEXES WITH A METAL-METAL BOND

XI *. SYNTHESIS AND STRUCTURE OF THE PENTANUCLEAR CYCLOPENTADIENYL-t-BUTYLTHIOLATE-SULPHIDE CHROMIUM CLUSTER ${ }^{2} \mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu_{2}-\mathrm{SCMe}_{3}\right)\left(\mu_{3}-\mathrm{S}_{2} \mathrm{I}_{2} \mathrm{Cr}\right.$ WITH A "BOW-TIE" FRAME

A.A. PASYNSKII*, I.L. EREMENKO, B. ORAZSAKHATOV, G.Sh. GASANOV,
N.S Kurnakov Institute of General and Inorganic Chemistry, Academy of Sciences of the U.S.S R., 31 Leninskil Prospekt, Moscow V-71 (U.S.S.R.)
V.E. SHKLOVER and Yu.T. STRUCHKOV
A.N. Nesmeyanov Institute of Organoelement Compounds, Academy of Sctences of the U.S S.R., 28 Vavilov St., Moscow' V-312 (U.S.S.R.)

(Received February 28th, 1984)

Summary

The reaction of the binuclear complex $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mathrm{SCMe}_{3}\right)_{2} \mathrm{~S}(\mathrm{I})$ with $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cr}(\mathrm{CO})_{3}$ in a benzene/heptane ($1 / 2$) mixture under UV irradiation yields black crystals of the cluster $\left[\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mathrm{SCMe}_{3}\right) \mathrm{S}_{2}\right]_{2} \mathrm{Cr}$ (II), which, according to X -ray data, contains a pentanuclear "bow-tie" frame with a central $\mathrm{Cr}^{1 \mathrm{I}}$ atom, the angle between the Cr_{3} triangle planes being 90°. The bonds between the central and peripheral chromium atoms are oridinary ($2.933(1)$ and $2.889(1) \AA$), while two pairs of Cr^{111} atoms are double-bonded ($\mathrm{Cr}-\mathrm{Cr} 2.655(1) \AA$). Above and below each Cr_{3} triangle is a μ_{3}-sulphide bridge (average $\mathrm{Cr}_{\text {(centr) }}-\mathrm{S} 2.333(3)$, average $\mathrm{Cr}_{\text {(perph })}-\mathrm{S} 2.305(3) \AA$). Moreover, the peripheral $\mathrm{Cr}^{\mathrm{III}}$ atoms are bonded in pairs with a $\mu_{2}-\mathrm{SCMe}_{3}$ bridge (average $\mathrm{Cr}-\mathrm{S} 2.358(4) \AA$), and every Cr^{1111} atom is coordinated by a π-cyclopentadienyl ligand (average $\mathrm{Cr}-\mathrm{C} 2.26(1) \AA$, average $\mathrm{C}-\mathrm{C} 1.43(2) \AA$).

Introduction

A series of our previous papers have shown that the binuclear complex $\left(\mathrm{CpCrSCMe}_{3}\right)_{2} \mathrm{~S}$ (I), on coordination with metal carbonyl Lewis acids, retains its geometry when the metal coordination number (MCN) is $6\left(\mathrm{M}(\mathrm{CO})_{6}\right.$, where $\mathrm{M}=\mathrm{Cr}$,

[^0]TABLE 1
ATOMIC COORDINATES (for Cr and S , multiplied by 10^{5}; for the other atoms, multipled by 10^{4}) AND ANISOTROPIC TEMPERATURE FACTORS IN THE FORM $T=\exp -1 / 4\left(B_{11} \mathrm{~h}^{2} a^{\star 2}+\ldots+2 B_{23} k l b^{\star} c^{\star}\right)$ FOR II

Atom	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
$\mathrm{Cr}(1)$	$1 / 2$	$22533(30)$	$1 / 4$	$1.09(9)$	$0.46(9)$	$0.9(9)$	0	$0.67(8)$	0
$\mathrm{Cr}(2)$	$41329(6)$	$2949(21)$	$27599(10)$	$1.19(7)$	$0.44(6)$	$0.6(6)$	$0(5)$	$0.67(6)$	$-0.04(5)$
$\mathrm{Cr}(3)$	$39072(6)$	$12327(22)$	$12651(10)$	$1.04(7)$	$0.60(6)$	$0.56(6)$	$-0.12(6)$	$0.49(6)$	$-0.13(5)$
$\mathrm{S}(1)$	$42642(10)$	$41702(33)$	$16896(16)$	$1.4(1)$	$0.66(9)$	$0.87(9)$	$0.02(8)$	$0.72(9)$	$0.9(8)$
$\mathrm{S}(2)$	$44856(10)$	$1780(34)$	$27027(16)$	$1.2(1)$	$0.61(9)$	$0.86(9)$	$0.03(8)$	$0.63(9)$	$0.04(8)$
$\mathrm{S}(3)$	$32680(10)$	$23454(34)$	$15248(16)$	$1.0(1)$	$0.96(9)$	$0.88(9)$	$0.17(8)$	$0.54(8)$	$0.13(8)$
$\mathrm{C}(1)$	$2892(4)$	$528(14)$	$1705(7)$	$1.1(4)$	$1.2(4)$	$1.4(4)$	$0.1(3)$	$0.7(3)$	$0.4(3)$
$\mathrm{C}(2)$	$2647(4)$	$1478(15)$	$2172(7)$	$1.2(5)$	$2.0(5)$	$1.9(5)$	$0.5(4)$	$1.1(4)$	$0.2(4)$
$\mathrm{C}(3)$	$3249(4)$	$-1057(15)$	$2288(7)$	$1.8(5)$	$1.1(4)$	$2.2(5)$	$0.3(4)$	$1.3(4)$	$0.8(4)$
$\mathrm{C}(4)$	$2461(4)$	$-190(16)$	$782(7)$	$1.2(5)$	$2.2(5)$	$1.4(4)$	$-0.6(4)$	$0.4(4)$	$-0.5(4)$
$\mathrm{C}(5)$	$4769(4)$	$4305(14)$	$4024(6)$	$2.1(5)$	$1.3(4)$	$0.5(4)$	$-0.4(4)$	$0.7(4)$	$-0.6(3)$
$\mathrm{C}(6)$	$4562(4)$	$2824(14)$	$4263(6)$	$1.8(5)$	$1.5(4)$	$0.8(4)$	$-01(4)$	$0.9(4)$	$-0.6(3)$
$\mathrm{C}(7)$	$4009(4)$	$3150(14)$	$3899(6)$	$3.0(5)$	$1.3(4)$	$0.8(4)$	$0.3(4)$	$1.4(4)$	$-0.2(3)$
$\mathrm{C}(8)$	$3869(5)$	$4879(15)$	$3437(7)$	$3.8(6)$	$1.1(4)$	$1.2(4)$	$0.3(4)$	$1.8(4)$	$-0.2(3)$
$\mathrm{C}(9)$	$4347(4)$	$5586(14)$	$3532(7)$	$3.3(6)$	$0.8(4)$	$1.2(4)$	$0(4)$	$1.4(4)$	$-0.6(3)$
$\mathrm{C}(10)$	$3577(4)$	$-1321(15)$	$409(6)$	$1.6(5)$	$1.3(4)$	$1.1(4)$	$-0.5(4)$	$0.5(4)$	$-0.9(4)$
$\mathrm{C}(11)$	$4128(4)$	$-1113(15)$	$706(6)$	$3.3(6)$	$1.4(4)$	$1.1(4)$	$0(4)$	$1.7(4)$	$-0.8(4)$
$\mathrm{C}(12)$	$4177(4)$	$562(14)$	$344(7)$	$2.9(5)$	$1.5(4)$	$1.1(4)$	$-0.4(4)$	$1.7(4)$	$-0.8(4)$
$\mathrm{C}(13)$	$3653(4)$	$1379(15)$	$-188(6)$	$1.3(4)$	$2.2(5)$	$0.4(4)$	$-0.3(4)$	$0.4(4)$	$-0.5(3)$
$\mathrm{C}(14)$	$3293(4)$	$206(15)$	$-134(6)$	$2.1(5)$	$1.8(5)$	$07(4)$	$-0.2(4)$	$0.7(4)$	$-0.7(4)$

$\left.\mathrm{Mo}, \mathrm{W} ; \mathrm{Mn}_{2}(\mathrm{CO})_{10}, \mathrm{CpMn}(\mathrm{CO})_{3}\right)$, but easily loses one or two CMe_{3} groups with the formation of direct $\mathrm{Cr}-\mathrm{M}$ bonds when the $\mathrm{MCN}=5\left(\mathrm{Fe}(\mathrm{CO})_{5}\right.$, non-bridged form of $\left.\mathrm{Co}_{2}(\mathrm{CO})_{8},[\mathrm{CpNi}(\mathrm{CO})]_{2}\right)$ [1]. It appeared interesting to study the reaction of I with the complex $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cr}(\mathrm{CO})_{3}$. Its MCN is 6 , but cleavage of the photosensitive $\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{Cr}$ bond [2] should lead to a smaller MCN and, therefore, to the formation of new $\mathrm{Cr}-\mathrm{M}$ bonds ($\mathrm{Cr}-\mathrm{Cr}$ in this case).

Results

It has been proved that the reaction of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mathrm{SCMe}_{3}\right)_{2} \mathrm{~S}$ (I) with $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cr}(\mathrm{CO})_{3}$ in a benzene/heptane ($1 / 2$) mixture under UV irradiation leads to skeletal transformation of I with the formation of the pentanuclear complex $\mathrm{CP}_{4} \mathrm{Cr}_{5}\left(\mathrm{SCMe}_{3}\right)_{2}(\mathrm{~S})_{4}$ (II):

(II)

The black prisms of II are gradually hydrolysed in air, easily soluble in THF and benzene, and moderately soluble in heptane.

The structure of complex II was solved by an X-ray analysis. Crystals of II are monoclinic, C2/c space group; $a 30.123(30), b 7.279(6), ~ c 17.749(20) ~ \AA: \beta 122.94(7)^{\circ}$, $V 3266.1 \AA^{3}, Z=4$. The atomic coordinates and temperature factors are given in Table 1, and bond lengths and angles in Tables 2 and 3. The frame of molecule II

C(2)

Fig. 1. Molecular structure of the pentanuclear cluster II.

TABLE 2
BOND LENGTHS FOR 11

Bond	$d(\mathrm{~A})$	Bond	$d(\mathrm{~A})$	Bond	$d(\mathrm{~A})$
$\mathrm{Cr}(1)-\mathrm{Cr}(2)$	$2933(2)$	$\mathrm{Cr}(2)-\mathrm{C}(9)$	$224(1)$	$\mathrm{C}(1)-\mathrm{C}(4)$	$153(1)$
$\mathrm{Cr}(1)-\mathrm{Cr}(3)$	$2.889(2)$	$\mathrm{Cr}(3)-\mathrm{S}(1)$	$2.327(3)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.42(2)$
$\mathrm{Cr}(1)-\mathrm{S}(1)$	$2.337(3)$	$\mathrm{Cr}(3)-\mathrm{S}(2)$	$2.302(3)$	$\mathrm{C}(5)-\mathrm{C}(9)$	$143(2)$
$\mathrm{Cr}(1)-\mathrm{S}(2)$	$2.328(3)$	$\mathrm{Cr}(3)-\mathrm{S}(3)$	$2354(4)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.44(2)$
$\mathrm{Cr}(2)-\mathrm{Cr}(3)$	$2.665(2)$	$\mathrm{Cr}(3)-\mathrm{C}(10)$	$226(1)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$143(2)$
$\mathrm{Cr}(2)-\mathrm{S}(1)$	$2.318(3)$	$\mathrm{Cr}(3)-\mathrm{C}(11)$	$225(1)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.45(2)$
$\mathrm{Cr}(2)-\mathrm{S}(2)$	$2.308(3)$	$\mathrm{Cr}(3)-\mathrm{C}(12)$	$2.24(1)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.45(2)$
$\mathrm{Cr}(2)-\mathrm{S}(3)$	$2.361(3)$	$\mathrm{Cr}(3)-\mathrm{C}(13)$	$2.259(9)$	$\mathrm{C}(10)-\mathrm{C}(14)$	$1.41(2)$
$\mathrm{Cr}(2)-\mathrm{C}(5)$	$2.24(1)$	$\mathrm{Cr}(3)-\mathrm{C}(14)$	$2.27(1)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.42(2)$
$\mathrm{Cr}(2)-\mathrm{C}(6)$	$2.247(9)$	$\mathrm{S}(3)-\mathrm{C}(1)$	$188(1)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.46(2)$
$\mathrm{Cr}(2)-\mathrm{C}(7)$	$2.25(1)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.54(2)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.42(2)$
$\mathrm{Cr}(2)-\mathrm{C}(8)$	$2.26(1)$	$\mathrm{C}(1)-\mathrm{C}(3)$	$153(2)$		

Fig 2 Projection of the molecule of the pentanuclear cluster II along the $\mathrm{Cr}-\mathrm{Cr}$ axis
(Fig. 1) is a pentanuclear metal spirane containing $\left[\mathrm{Cr}^{\mathrm{III}}\right]_{2} \cdot \mathrm{Cr}^{\mathrm{II}} \cdot\left[\mathrm{Cr}^{\mathrm{III}}\right]_{2}$ ions. The central $\mathrm{Cr}(1)$ atom is situated on the two-fold axis $2[1 / 2, y, 1 / 4]$ and thus the planes of the two Cr_{3} triangles are normal to each other. Each metal triangle has two long $\mathrm{Cr}-\mathrm{Cr}$ bonds $(\mathrm{Cr}(1)-\mathrm{Cr}(2) 2.938(1)$ and $\mathrm{Cr}(1)-\mathrm{Cr}(3) 2.889(1) \AA$) and one short $\mathrm{Cr}-\mathrm{Cr}$ bond $(\mathrm{Cr}(2)-\mathrm{Cr}(3) 2.665(1) \AA)$. This difference in the distances between chromium is accompanied with corresponding changes of the CrSCr angles in the μ_{3}-sulphide bridges situated above and below the Cr_{3} triangles (Fig. 2). Thus, the longer $\mathrm{Cr}(1)-\mathrm{Cr}(2)$ and $\mathrm{Cr}(1)-\mathrm{Cr}(3)$ bonds correspond to the larger CrSCr angles in the range $76.5(1)-78.5(1)^{\circ}$, while the shorter $\operatorname{Cr}(2)-\operatorname{Cr}(3)$ bond corresponds to the smaller CrSCr angles (70.02(9)-70.62(9) ${ }^{\circ}$). The $\mathrm{Cr}(1) \mathrm{S}(1) \mathrm{S}(2)$ plane is, in fact, normal to the $\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{Cr}(3)$ triangle and the $\mathrm{Cr}(1) \mathrm{S}(1)^{\prime} \mathrm{S}(2)^{\prime}$ plane. Thus, the $\mathrm{Cr}(1)$ atom with a d^{4} electronic configuration is surrounded by a tetrahedron of sulphur and chromium atoms $\operatorname{Cr}(2)$ and $\mathrm{Cr}(3)$. Each of the latter is additionally coordinated by one $\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}$ ligand ($\mathrm{Cr}-\mathrm{C} 2.24(1)-2.27(1)$, average $\mathrm{C}-\mathrm{C} 1.43(2) \AA$), two $\mu_{3^{-}}$ bridging sulphur atoms and a μ_{2}-bridging ligand $\mathrm{SCMe}_{3}(\mathrm{Cr}-\mathrm{S} 2.361(3)$ and 2.354(4), S-C 1.88(1) A, $\mathrm{CrSCr} 68.82(9)^{\circ}$).

Discussion

Photochemical synthesis of the pentanuclear cluster II from I and $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cr}(\mathrm{CO})_{3}$ probably occurs through intermediate formation of the adduct $(\mathrm{CpCrSCMe})_{3} \mathrm{~S}$. $\mathrm{Cr}(\mathrm{CO})_{2} \mathrm{C}_{6} \mathrm{H}_{6}$. The elimination of the $\mathrm{C}_{6} \mathrm{H}_{6}$ tridentate ligand from the latter under UV irradiation obviously not only leads to the conversion of coordinated I with the loss of one CMe_{3} group, but also allows coordination of the second molecule of I with the final formation of II. On the other hand, formation of the intermediate $\left(\mathrm{Cp}_{2} \mathrm{Cr}_{2} \mathrm{SCMe}_{3}\right)\left(\mu_{3}-\mathrm{S}\right)_{2} \mathrm{Cr}(\mathrm{CO})_{2}$ cannot be ruled out. This intermediate is analogous to the recently described cyclic metal cluster $\left(\mathrm{Cp}_{2} \mathrm{Cr}_{2} \mathrm{SCMe}_{3}\right)\left(\mu_{3}-\mathrm{S}\right)_{2} \mathrm{Co}(\mathrm{CO})_{2}$ (III) [1], but being electron-deficient, it is disproportionated into II and the $\mathrm{Cr}(\mathrm{CO})_{4}$ fragment.

The metal spirane structure of cluster II is especially interesting due to fact that the bond lengths between the peripheral $\mathrm{Cr}^{I I I}$ atoms remain virtually unchanged ($2.665(1) \AA$), compared to the original molecule of $I(2.689 \AA$), despite the formation of ordinary bonds of ca. $2.9 \AA$ between each peripheral Cr^{111} atom and the central $\mathrm{Cr}^{I I}$ atom. The lengths of these bonds are close to the ordinary $\mathrm{Cr}-\mathrm{Cr}$ bond length ($2.906 \AA$) in the complex $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{NO})_{2}(\mu$-SCMe $)(\mu$-SSCMe 3) [3]. The same situation was observed on formation of cluster III with a cyclic metal frame $\mathrm{Cr}_{2} \mathrm{Co}$, where, in spite of the formation of two oridinary $\mathrm{Co}-\mathrm{Cr}$ bonds (2.579 and $2.529 \AA$), the $\mathrm{Cr}-\mathrm{Cr}$ multiple bond was preserved and even shortened to 2.625(1) and 2.609(1) \AA in two independent molecules. A recent discussion of this problem [4] has shown that on the assumption of a double $\mathrm{Cr}=\mathrm{Cr}$ bond in I and in the $\left(\mathrm{Cp}_{2} \mathrm{Cr}_{2} \mathrm{SCMe}_{3}\right)\left(\mu_{3^{-}}\right.$ $S)_{2}$ fragment (Q), each chromium atom still has one half-occupied orbital capable of accepting one electron from the added metal-containing group. In the process oridinary $\mathrm{Cr}-\mathrm{M}$ bonds are formed, but without affecting the oribitals of the double $\mathrm{Cr}=\mathrm{Cr}$ bond, which therefore remains unchanged. For instance, in complex II the central $\mathrm{Cr}^{\mathrm{II}}$ atom requires only 4 electrons to fill the four half-occupied orbitals of the four $\mathrm{Cr}^{[11}$ atoms in the two (Q) fragments. This explains the formation of four oridinary $\mathrm{Cr}_{\text {(centr) }}-\mathrm{Cr}_{\text {(periph) }}$ bonds, as well as the high symmetry of structure II.
TABLE 3
BOND ANGLES FOR II

Angle	$\omega\left({ }^{\circ}\right)$	Angle	$\omega\left({ }^{\circ}\right.$)	Angle	$\omega\left({ }^{\circ}\right)$
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{Cr}(2)^{\prime}$	160.11(7)	$\mathrm{Cr}(3) \mathrm{Cr}(2) \mathrm{S}(2)$	54.59(9)	$\mathrm{Cr}(2) \mathrm{S}(2) \mathrm{Cr}(3)$	70.62(9)
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{Cr}(3)$	54.47(5)	$\mathrm{Cr}(3) \mathrm{Cr}(2) \mathrm{S}(3)$	55.46(9)	$\mathrm{Cr}(2) \mathrm{S}(3) \mathrm{Cr}(3)$	68.82(9)
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{Cr}(3)^{\prime}$	132.06(7)	$\mathrm{S}(1) \mathrm{Cr}(2) \mathrm{S}(2)$	$90.6(1)$	$\mathrm{Cr}(2) \mathrm{S}(3) \mathrm{C}(1)$	115.9(4)
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{S}(1)$	50.65(8)	$\mathrm{S}(1) \mathrm{Cr}(2) \mathrm{S}(3)$	84.5(1)	$\mathrm{Cr}(3) \mathrm{S}(3) \mathrm{C}(1)$	115.1(4)
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{S}(1)^{\prime}$	115.33(9)	$\mathrm{S}(2) \mathrm{Cr}(2) \mathrm{S}(3)$	95.6(1)	$\mathrm{S}(3) \mathrm{C}(1) \mathrm{C}(2)$	106.6(8)
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{S}(2)$	50.45(8)	$\mathrm{Cr}(1) \mathrm{Cr}(3) \mathrm{Cr}(2)$	63.60(6)	$\mathrm{S}(3) \mathrm{C}(1) \mathrm{C}(3)$	$1122(8)$
$\mathrm{Cr}(2) \mathrm{Cr}(1) \mathrm{S}(2)^{\prime}$	149.43(9)	$\mathrm{Cr}(1) \mathrm{Cr}(3) \mathrm{S}(1)$	51.88(8)	$\mathrm{S}(3) \mathrm{C}(1) \mathrm{C}(4)$	107.4(8)
$\mathrm{Cr}(3) \mathrm{Cr}(1) \mathrm{S}(1)$	51.57(8)	$\mathrm{Cr}(1) \mathrm{Cr}(3) \mathrm{S}(2)$	51.79(8)	$\mathrm{C}(2) \mathrm{C}(1) \mathrm{C}(3)$	109.9(9)
$\mathrm{Cr}(3) \mathrm{Cr}(1) \mathrm{S}(1)^{\prime}$	158.22(9)	$\mathrm{Cr}(1) \mathrm{Cr}(3) \mathrm{S}(3)$	118.61(9)	$\mathrm{C}(2) \mathrm{C}(1) \mathrm{C}(4)$	110.8(9)
$\mathrm{Cr}(3) \mathrm{Cr}(1) \mathrm{S}(2)$	51.00 (8)	$\mathrm{Cr}(2) \mathrm{Cr}(3) \mathrm{S}(1)$	54.83(9)	$\mathrm{C}(3) \mathrm{C}(1) \mathrm{C}(4)$	110.0(9)
$\mathrm{Cr}(3) \mathrm{Cr}(1) \mathrm{S}(2)^{\prime}$	107.19(9)	$\mathrm{Cr}(2) \mathrm{Cr}(3) \mathrm{S}(2)$	54.78(9)	$\mathrm{C}(6) \mathrm{C}(5) \mathrm{C}(9)$	106.7(9)
$\mathrm{S}(1) \mathrm{Cr}(1) \mathrm{S}(1)^{\prime}$	106.7(1)	$\mathrm{Cr}(2) \mathrm{Cr}(3) \mathrm{S}(3)$	55.72(9)	$\mathrm{C}(5) \mathrm{C}(6) \mathrm{C}(7)$	109.2(9)
$\mathrm{S}(1) \mathrm{Cr}(1) \mathrm{S}(2)$	89.7(1)	$\mathrm{S}(1) \mathrm{Cr}(3) \mathrm{S}(2)$	$905(1)$	$\mathrm{C}(6) \mathrm{C}(7) \mathrm{C}(8)$	108 (1)
$\mathrm{S}(1) \mathrm{Cr}(1) \mathrm{S}(2){ }^{\prime}$	141.3(1)	$\mathrm{S}(1) \mathrm{Cr}(3) \mathrm{S}(3)$	$84.5(1)$	$\mathrm{C}(7) \mathrm{C}(8) \mathrm{C}(9)$	106 (1)
$\mathrm{S}(2) \mathrm{Cr}(1) \mathrm{S}(2)^{\prime}$	99.1(1)	$\mathrm{S}(3) \mathrm{Cr}(3) \mathrm{S}(2)$	96.0 (1)	$\mathrm{C}(5) \mathrm{C}(9) \mathrm{C}(8)$	110 (1)
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{Cr}(3)$	61.92(6)	$\mathrm{Cr}(1) \mathrm{S}(1) \mathrm{Cr}(2)$	78.1(1)	$\mathrm{C}(11) \mathrm{C}(10) \mathrm{C}(14)$	108 (1)
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{S}(1)$	51.24(8)	$\mathrm{Cr}(1) \mathrm{S}(1) \mathrm{Cr}(3)$	$76.5(1)$	$\mathrm{C}(10) \mathrm{C}(11) \mathrm{C}(12)$	108 (1)
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{S}(2)$	54.59(9)	$\mathrm{Cr}(2) \mathrm{S}(1) \mathrm{Cr}(3)$	70.02(9)	$\mathrm{C}(11) \mathrm{C}(12) \mathrm{C}(13)$	107.5(9)
$\mathrm{Cr}(1) \mathrm{Cr}(2) \mathrm{S}(3)$	116.70(9)	$\mathrm{Cr}(1) \mathrm{S}(2) \mathrm{Cr}(2)$	78.5(1)	$\mathrm{C}(12) \mathrm{C}(13) \mathrm{C}(14)$	107.9(9)
$\mathrm{Cr}(3) \mathrm{Cr}(2) \mathrm{S}(1)$	55.15(9)	$\mathrm{Cr}(1) \mathrm{S}(2) \mathrm{Cr}(3)$	$772(1)$	$\mathrm{C}(10) \mathrm{C}(14) \mathrm{C}(13)$	109 (1)

Experimental

All experiments were carried out in a pure argon atmosphere. Benzene and heptane were purified by distillation over Na sand in pure argon stream. Initial $\left.(\mathrm{CpCrSCMe})_{3}\right)_{2} \mathrm{~S}$ and $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cr}(\mathrm{CO})_{3}$ were prepared by the methods of refs. 5 and 6 , respectively.

IR spectra were measured with a UR- 20 spectrometer in KBr pellets. Experimental data for an X-ray structural study were obtained with a Syntex P21 autodiffractometer ($\lambda=\mathrm{Mo}-K_{\alpha}$, graphite monochromator, $T-100^{\circ} \mathrm{C}, \theta / 2 \theta$-scan, $2 \theta \leqslant$ 52°). The structure was solved by the direct method using a modified MULTAN program [7], and refined in a full-matrix anisotropic approximation for all non-hydrogen atoms to $R=0.064$ and $R_{w^{\prime}}=0.080$ for 2696 independent reflections with $I \geqslant 2 \sigma$.
$\left[\mathrm{Cp}_{2} \mathrm{Cr}_{2}\left(\mu-\mathrm{SCMe}_{3}\right)\left(\mu_{3}-\mathrm{S}\right)_{2}\right]_{2} \mathrm{Cr}(\mathrm{II})$
A violet solution of $0.13 \mathrm{~g}(0.6 \mathrm{mmol})$ of $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cr}(\mathrm{CO})_{3}$ and $0.30 \mathrm{~g}(0.6 \mathrm{mmol})$ of $\left.(\mathrm{CpCrSCMe})_{3}\right)_{2} \mathrm{~S}$ in a mixture of 15 ml of benzene and 30 ml of heptane was exposed to UV radiation (PRK-4 lamp) in a quartz Schlenk vessel equipped with a watercooled jacket $\left(20^{\circ} \mathrm{C}\right)$ and a magnetic stirrer. After 4 h the colour of the mixture changed to black-violet and black crystals were precipitated. After standing for 3 d at ca. $0^{\circ} \mathrm{C}$, the crystals were separated from the mother liquor, washed with pentane and dried in vacuo. M.p. (dec.) $148-153^{\circ} \mathrm{C}$. Yield 73%.

IR spectrum (ν, cm^{-1}): 810s, $1018 \mathrm{~m}, 1060 \mathrm{w}, 1168 \mathrm{~m}, 2930 \mathrm{w}, 2970 \mathrm{w}, 2985 \mathrm{w}$, 3090w.

References

1 A.A. Pasynskii, I.L. Eremenko, V.T. Kalinnkov and Yu.A. Buslaev, Izv. SO Akad. Nauk SSSR, Ser. Khim. Nauk, (1982) N9, vyp. 4, p. 88.
2 W. Strohmeier and H. Mittnacht, Z. Phys. Chem., 29 (1961) 399.
3 I.L. Eremenko, A.A. Pasynskii, V.T. Kalinnikov, Yu.T. Struchkov and G.G. Aleksandrov, Inorg. Chim. Acta, 52 (1981) 107.
4 A.A. Pasynskii, I.L. Eremenko, G.Sh. Gasanov, B. Orazsakhatov, V.E. Shklover and Yu.T. Struchkov, Koord. Khim., 10 (1984), N5, 634.
5 A.A. Pasynskii, I.L. Eremenko, Yu.V. Rakitin, B.M. Novotortsev, V.T. Kalinnikov, G.G. Aleksandrov and Yu.T. Struchkov, J. Organomet. Chem., 165 (1979) 57.
6 R.B. King, Organometallic Synthescs, Vol. 1, Transition metal compounds, Acad. Press, New York, 1965, p. 136.
7 R.G. Gerr, A.I. Yanovsky and Yu.T. Struchkov, Kristallographia, 28 (1983) 1029.
8 I.L. Eremenko, A.A. Pasynskii, Yu.V. Rakıtin, O.G. Ellert, V.M. Novotortsev, V.T. Kalınnikov. V.E. Shklover and Yu.T. Schruchkov, J. Organomet. Chem., 256 (1983) 291.

[^0]: * For part X see ref. 8.

